Brief

Here is a summary of the document in approximately 150 words:

Title: "Fine-tuning of Large Language Models for financial markets through ontological reasoning""

Summary:

The document discusses the limitations of pre-trained Large Language Models (LLMs) in financial domains due to their lack of domain-specific knowledge. It highlights the need for fine-tuning techniques to adapt LLMs to specific domains. The authors propose an approach that combines the strengths of both LLMs and Knowledge Representation and Reasoning (KRR) systems. Specifically

La Banca d’Italia pubblica oggi “Fine-tuning di Large Language Models per mercati finanziari attraverso il ragionamento ontologico”, il nuovo numero della collana “Mercati, infrastrutture, sistemi di pagamento”. I Large Language Model (LLM) vengono comunemente sottoposti a un processo di pre-training su ampie raccolte di dati testuali generici, spesso accessibili pubblicamente. Il pre-training consente agli LLM

This content is restricted.

Highlights content goes here...

La Banca d’Italia pubblica oggi “Fine-tuning di Large Language Models per mercati finanziari attraverso il ragionamento ontologico”, il nuovo numero della collana “Mercati, infrastrutture, sistemi di pagamento”. I Large Language Model (LLM) vengono comunemente sottoposti a un processo di pre-training su ampie raccolte di dati testuali generici, spesso accessibili pubblicamente. Il pre-training consente agli LLM

This content is restricted.

Bank of Italy

Quick Insight
RADA.AI
RADA.AI
Hello! I'm RADA.AI - Regulatory Analysis and Decision Assistance. Your Intelligent guide for compliance and decision-making. How can i assist you today?
Suggested

Form successfully submitted. One of our GRI rep will contact you shortly

Thanking You!

Enter your Email

Enter your registered username/email id.

Enter your Email

Enter your email id below to signup.
Individual Plan
$125 / month OR $1250 / year
Features
Best for: Researchers, Legal professionals, Academics
Enterprise Plan
Contact for Pricing
Features
Best for: Law Firms, Corporations, Government Bodies